Model selection in nonparametric hazard regression
نویسندگان
چکیده
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
منابع مشابه
Covariate selection for semiparametric hazard function regression models
We study a flexible class of non-proportional hazard function regression models in which the influence of the covariates splits into the sum of a parametric part and a time-dependent nonparametric part. We develop a method of covariate selection for the parametric part by adjusting for the implicit fitting of the nonparametric part. Our approach is based on the general model selection methodolo...
متن کاملNonparametric Model Selection in Hazard Regression
We propose a novel model selection method for a nonparametric extension of the Cox proportional hazard model, in the framework of smoothing splines ANOVA models. The method automates the model building and model selection process simultaneously by imposing a penalty on the norms instead of squared norms. It is a natural extension of the LASSO to the situation where component selection is of int...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کاملSome Problems in Model Selection 1
This dissertation consists of three parts: the first two parts are related to smoothing spline ANOVA models; the third part concerns the Lasso and its related procedures in model selection. In Part I, by adopting the Cox proportional hazard model to quantify the hazard function, we propose a novel nonparametric model selection technique to analyze time to event data, within the framework of smo...
متن کاملBuilding Cox-Type Structured Hazard Regression Models with Time-Varying Effects
In recent years, flexible hazard regression models based on penalised splines have been developed that allow us to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. Despite their immediate appeal in terms of flexibility, these models introduce additional difficulties when a subset of covariates and the corresponding modelling alternatives have to be cho...
متن کاملVariable Selection in Nonparametric and Semiparametric Regression Models
This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...
متن کامل